The Refinement of the Crystal Structure of the Pyrene–Tetracyanoethylene Complex

By Isao Ikemoto and Haruo Kuroda

Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo, Japan

(Received 19 July 1967)

Crystals of the 1:1 complex of pyrene and tetracyanoethylene (TCNE) are monoclinic, space group $P2_1/a$ with a=14.333, b=7.242, c=7.978 Å, $\beta=92.36^{\circ}$, Z=2. The structure was refined by threedimensional analysis by the block-diagonal least-squares method. Pyrene and TCNE molecules are stacked alternately along the c axis direction, making their molecular planes almost parallel to each other. The mean separation of the molecular planes is 3.323 Å.

Introduction

The crystal structures of π -molecular compounds usually have a common feature, namely that donor and acceptor molecules are alternately stacked, plane-toplane, along one of the crystal axes with relatively small separation between molecular planes. This is in accord with the prediction based on the charge-transfer theory (Mulliken, 1952). It is not known, however, if the further details of mutual orientation of donor and acceptor molecules can be predicted from the chargetransfer theory. In order to clarify this problem, detailed theoretical and experimental investigations have to be carried out on some typical π -molecular compounds.

From this point of view, the molecular compound formed between pyrene and tetracyanoethylene (TCNE) is of particular interest, since, in the first place, the charge-transfer interaction is expected to be strong in this case because of the large electron affinity of TCNE, and, in the second place, this compound is suited for the theoretical treatment because the component molecules are of simple molecular structure with high symmetry. We have studied the visible and ultraviolet ab-

Fig. 1. Projection of the molecular arrangement on to the (010) plane.

sorption spectrum of the crystal of this compound and have carried out a theoretical investigation of the charge-transfer interaction between pyrene and TCNE (Kuroda, Ikemoto & Akamatu, 1966a). We have already reported the results of the preliminary analysis of the crystal structure by using the two-dimensional method (Kuroda, Ikemoto & Akamatu, 1966b). The purpose of the present study is to elucidate the further details of the crystal structure of this molecular compound by the three-dimensional analysis.

Experimental

Lattice constants were redetermined by least-squares calculation based on the measurement of 10 diffraction lines with a diffractometer, Geigerflex. Quartz powder was used as the internal standard.

Crystal data

Monoclinic $a = 14.333 \pm 0.009 \text{ Å}$ $b = 7.242 \pm 0.008$ $c = 7.978 \pm 0.004$ $\beta = 92.36^{\circ} \pm 0.04^{\circ}$ $V = 827.5 \text{ Å}^{3}$ Formula C₁₆H₁₀. C₆N₄; F.W. 330.4 D_x (calculated density) = 1.285 g.cm⁻³ D_m (measured density) = 1.3 ± 0.02 g.cm⁻³ Z = 2 $\mu = 7.5 \text{ cm}^{-1}$ (Cu K α)

Space group $P2_1/a$ (from Weissenberg photographs) (Absent spectra h0l when h is odd, 0k0 when k is odd).

The dark purple crystal of a lath shape of 0.3 mm length was used for data collection on a Weissenberg goniometer. A set of intensity data was obtained up to the 3rd layer around the *b* and *c* axes and the zero layer around [101]. The intensities were measured visually from multi-film Weissenberg photographs. Nifiltered Cu $K\alpha$ radiation was used. No correction was made for absorption, while the correction for the Lorentz and polarization factors was made in the usual way. The data were placed on the same relative scale by the method of Rollett & Sparks (1960). In all, 1438 independent reflexions from 1889 possible reflexions were obtained, but the intensity was not measurable on 429 of them.

Refinement

The structure was refined by the least-squares method. The calculation was carried out by means of the computer program written by Y. Okaya and modified by T. Ashida. This program uses the block-diagonal approximation with a 9×9 matrix for each atom with anisotropic temperature factors and a 4×4 matrix for each atom with an isotropic temperature factor. The scale factor is refined by assuming the overall temperature factor. The weighting scheme used was W = 1.0 for $F_0 \ge 2.7$ and W = 0.5 for $F_0 < 2.7$.

The parameters previously reported (Kuroda, Ikemoto & Akamatu, 1966b) were used as the starting values of the refinements, by introducing anisotropic temperature factors in place of the previous isotropic temperature factors. After several cycles of refinement neglecting hydrogen atoms, the R value decreased to 15%. The positions of all hydrogen atoms were determined by the usual $(F_o - F_c)$ synthesis. These hydrogen atoms were then included in the subsequent refinements assuming a common isotropic temperature factor.

Finally R decreased to 13.8%, excluding non-observable reflexions. Final parameters with their standard deviations are given in Table 1 and F_o and F_c are compared in Table 2.

Discussion

The arrangement of molecules in the crystal is shown in Fig. 1. The donor and acceptor molecules are stacked alternately along the c axis.

The molecules can be considered planar. The equations of the planes of pyrene and TCNE were calculated by the method of least-squares. The equations are:

-0.4274X + 0.4265Y + 0.8141Z = 0

()			-geo dale tati ota			
	x	$\sigma(x)$	У	$\sigma(y)$	Ζ	$\sigma(z)$
Pyrene						
C(1)	0.1433	9	-0.2742	10	0.2663	8
C(2)	0.1750	8	-0.1041	10	0.2157	8
C(3)	0.1193	7	0.0101	9	0.1078	7
C(4)	0.0291	7	-0.0571	8	0.0550	7
C(5)	-0.0027	7	-0.2304	8	0.1089	7
C (6)	0.0558	9	-0.3402	9	0.2114	8
C(7)	0.1502	8	0.1854	9	0.0525	8
$\mathbf{C}(8)$	0.0935	4	0.2939	9	-0.0517	8
H(1)	0.177		-0.349		0.374	
H(2)	0.229		-0.060		0.271	
H(3)	0.024		-0.439		0.239	
H(4)	0.218		0.246		0.095	
H(5)	0.093		0.448		-0.073	
TCNE						
C(9)	0.0423	8	0.0097	10	0.5328	8
C(10)	0.0849	8	-0.1374	9	0.6360	8
C(11)	0.0968	8	0.1788	10	0.5066	8
N(1)	0.1213	8		0 0	0.7159	8
N(2)	0.1406	8	0.3038	9	0.4902	8
(b) Thermal nerror the θ_{1} are used in the contraction, $\cos\left(\frac{1}{2}\theta_{1}+\frac{1}{2}\theta_{2}+\frac{1}{2}\theta_{1}+\frac{1}{2}\theta_{2}+\frac{1}{2}\theta_{1}+\frac{1}{2}\theta_{2}+\frac{1}{2}\theta_{1}+\frac{1}{2}\theta_{2}+\frac{1}{$						
			the expression. e	$xp \{-(n-p)\} + k$	$-p_{22} + i - p_{33} + n \kappa p_{12}$	$+ nip_{13} + \kappa ip_{23}$
-	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Pyrene						
C(1)	0.00596	0.02462	0.01379	0.00771	0.00182	0.00155
C(2)	0.00385	0.02425	0.01486	0.00267	-0.00129	0.00090
C(3)	0.00370	0.01853	0.01096	0.00032	0.00043	-0.00169
C(4)	0.00325	0.01533	0.00932	0.00121	0.00054	-0.00358
C(5)	0.00417	0.01390	0.01154	-0.00104	0.00119	-0.00208
C(6)	0.00646	0.01562	0.01145	0.00030	0.00205	0.00281
C(7)	0.00428	0.02071	0.01379	-0.00375	-0.00006	-0.00236
C(8)	0.00570	0.01744	0.01411	-0.00646	0.00306	-0.00157
TCNE						
C(9)	0.00526	0.02152	0.01325	0.00184	-0.00207	-0.00820
Č(10)	0.00487	0.01915	0.01153	0.00404	-0.00446	0.00262
$\vec{\mathbf{C}}(11)$	0.00489	0.02130	0.01393	0.00135	-0.00284	0.00272
N(1)	0.00707	0.02566	0.01858	0.00667	-0.00316	0.00804
N(2)	0.00585	0.02477	0.02240	-0.00588	-0.00148	-0.00001

Table 1

(a) Atomic coordinates in fractions of cell edges and their standard deviations in 10^{-3} Å

Table 2. Observed and calculated structure factors and their difference ($\times 10$)

H FO	FCP	F H FO FO	DF:	H FO FC DF	H FO FC DF	H FO FC DF	H FO FC DF
K,L= U	0	3 76 -78	2	-6 71 -67 -3	-8 31 29 2	10 56 52 3	-17• 22 -20 -2
2 695 7	25 -3 82 6	0 4 30 33 9 5 100 - 99	-2	-5 183-160 -22 -4 116 -99 -17	-4 44 -42 -1 -2 39 -35 -4	11 109-106 -2 12+ 15 -18 3	-14 43 -35 -7 -11 39 38 n
6 130 1	05 2	5 6 72 83	-10	-3 284 257 27	-1+ 19 -24 4	15 48 47 1	-10 122 104 18
10+ 27 -	32 4	2 /* 1/ -20 4 K,L= A 0		-1 213 175 38	3+ 24 -35 11	-9 71 -60 -10	-8 182 141 41
16• 23 -	31	7 1 31 -34	2	0 95 86 9	7 36 38 -1	-8 76 -65 -11	-7 37 -40 3
1 565 6	08 -4	2 K,L= 9 0	. 1	2 • 27 • 32 4	9 30 30 0	-6 37 -42 4	-5+13 2 10
4 63	55	7 2 41 45	-4	3 140-126 -14	K,L= 0 2	-5 35 -38 3	-4 115 99 16
6 211 1	65 4	6 K,L= 0 1	5	5 342-282 -59	-14+ 26 -33 6	-2 86 78 8	-1 36 25 11
7 62 8 113	41 2 75 3	0 -16• 12 -16 7 -14• 23 -25	4	6 122 103 19 7 142-129 -13	-10 87 82 4		0 70 -62 -7
10 - 9 -	11	2 -12 33 -23	-10	9 101 95 6	-6 48 -53 5	2 89 89 0	2 514 446 67
12+ 23	-1 -2	2 -8 323 339	-13	10 + 22 22 0	-2 746 805 -59	4 145 115 30	4 243 183 60
13 62 -	65 53 -	3 -6 318 319	0	14 47 -42 -4		5+11 19 -8 6 59 56 2	6 267-216 -51 7 65 58 7
15 64 -	66	1 -2 449 411	37	17+ 15 -20 5	4 180-174 -6	8 145-106 -39	8 75 62 13
16+ 19 - 18 42	22 37	3 0 193 186 4 2 199-153	-46	K,L= 4 1 -10 148 124 24	6 61 -59 -1 8 35 31 3	10 127-105 -22 11+ 8 16 -7	9 137-101 -35 10 260 213 47
K.L. 2	0	4 565 495	70	-9 237-218 -18	16 60 -61 1	13 22 31 -8	11 111 -77 -33
1 118 1	18 'n 15	3 8 152-155	2	-7 174-175 0	-17 33 -27 -6	-8 45 44 1	14+ 16 -13 -2
2 104	48 5 42 - 1	5 10 54 60 0 12 56 68	-5	-6 106-110 3	-15+ 17 -28 11	-7 45 -43 -1 -4+ 12 -8 -3	16 49 42 7 17 58 -38 -20
5 50 -	32 -1	7 16 32 37	-5	-4+ 24 -40 16	-8 88 70 17	-3 37 47 -9	K.L= 2 3
6 55 • 7• 14	58 20 -	2 K,L= 1 1 6 -16+ 18 27	-8	-3 73 -70 -3 -2 39 15 24	-7 34 -23 -11 -6 415-349 -66	-2 31 33 -1 -1 155 135 20	-14 38 33 4 -13 53 -60 6
8 194-1	77 -1	6 -15+ 17 -16	Ö	-1 58 62 -4	-5+ 29 -29 0	0 36 26 10	-12 72 69 2
10 38 -	32 -	5 -12 39 33	5	1 231 207 24	-3 584 608 -24	2+ 24 37 -13	-10 47 56 -9
11 • 12	14 - ng -	2 -10 94 -83 8 -9 87 64	-11	2 90 84 6 3 72 -64 -7	-212011357-156 -1 573 644 -70	3 77 -80 2 4 148 132 16	-9 97 95 1 -8+ 7 -10 3
13 80	69 1	1 -8 176-136	- 39	4 52 -51 -1	0 417 450 -33	5 55 63 -8	-7 98 88 9
14 127-1	24 - 20 -	3 -7 305 251 8 -6 172 151	20	5 1/9 -63 -15 7 156 138 18	2 587-622 34	7• 26 41 -15	-5 228-185 -43
K,La J	0	-5 78 -57	-21	8 151 121 29	4 39 35 3	8 91 79 12	-4 263 228 34
2 149 1	30 1	9 -3 331-301	-30	10 116 97 18	6 288 231 57	K,L= 6 2	-1 51 35 16
3 75	73 37 1	2 -2 229 208	i 20 i 30	11 54 -51 -2 12 44 53 -8	9 57 -46 -10 10 117 92 24	-8* 12 25 -13 -7* 25 27 -1	0 88 -73 -15 2 56 -43 -12
5 60 -	44 -1	5 0 301 303	-2	13+ 28 - 36 8	11 169-131 -38	-5 104 107 -3	3 480 424 56
7+14	8	5 2 67 70	-10	16+ 13 -16 3	13 86 -78 -7	-3+ 21 49 -28	6 74 56 18
8 • 28 9 30 -	32 - 20 -1	4 3 85 -77 0 4 248 208	-8 39	K,L≡ 5 1 -10⇒ 9 27 -17	14• 12 -11 0 17• 15 -26 11	-2* 22 20 2 -1 65 -61 -4	7 67 -45 -21 8+ 7 36 -28
10 54 -	49 -	4 5 349 294	55	-8 45 -47 1	K,L= 2 2	0 107 108 -1	9 79 -63 -15
11 178-1	54 - 63	4 6 2/4 200 2 7 277 224	53	-5 - 28 34 -6	-14+ 25 -34 9	2 102 -86 -15	15 36 38 -2
13 116-1	05 -1	0 10 41 6	35	-4+ 15 28 -12 -3 76 -81 5		3 125 108 16 4 156-132 -24	16+ 27 -19 -7 K.I.B. 3 3
17+ 18	16	2 12 62 52	9	-2+ 26 31 -4	-11+ 24 26 -2	5 65 63 2	-16 43 -44 0
K,L= 4 0 263 2	0- 43 2	13 74 -60 0 15 41 37	-14	-1 36 -42 6 0* 8 13 -4	-10* 8 -1/ 8	6* 21 31 -10 7 44 48 -4	-13 35 37 -1
1 98	76 2	1 18+ 18 18	0	1 40 26 13	-8+ 21 21 0 -7+ 28 -20 -7	8+ 12 27 -15.	-12 70 -71 1 -11 158 158 0
3 40	32	7 -17 33 36	-2	4 56 64 -7	-6 31 17 13	-8 50 -53 2	-10 133-115 -18
4 58 -	58 44	0 -164 16 -19 2 -14 39 -44	2	6 145 125 19 7 251 210 40	-5 80 -73 -7 -4 209 169 40	-7 60 -54 -5 -6 33 -37 3	-9 42 50 -8
6 80	84 -	3 -13 94 -94	0	8 92 82 9	-3 74 -65 -8	-5 24 -32 8	-6+ 27 -31 3
8 214 2	07	7 -11+ 8 -22	14	11 52 -61 9	-1 166 141 24	-2• 25 33 -7	-4 108 -76 -31
9 37 11+ 12	45 - 12	7 -10 61 56 0 -9 57 64	-7	12• 27 41 -13 14 41 45 -3	0 102 101 0 2 115 58 56	-1* 25 35 -9 0 41 -41 0	-3* 6 -4 -1 -2* 9 31 -21
12 84 -	83	0 -8+ 6 -18	11	15 41 38 2	3 205 163 41		-1 175-144 -30
16+ 13	20 -	6 -6 138-122	-16	-9 48 59 -10	5 232 175 57	3 • 20 -22 2	1 87 -90 3
K,L# 5 2 38	0 37	-5 46 47	2 -1	-7•14-23 9 -5 81-85 4	6• 9 1 7 8 39 - 30 - 9	4● 20 - 20 0 Kil# 8 2	2 116-107 -9 3 80 64 16
3 83	87 -	3 -3 81 -84	3	-2+ 29 -42 13	9 100 97 3	-7 65 -55 -10	4 156 141 14
5 • 20	19	1 0 38 45	-1-7	0 68 -71 2	11 115 92 22	-5 55 -48 -6	6 102 96 6
6 61 -	61 38 -	0 1 307-278	-29	2 117-117 0 3 167 159 8	12 178-167 -10 13 42 -52 9	-4 67 59 8 -2 31 28 2	7 16 24 -7 8 66 -58 -8
8 54	60 -	5 4 389-331	-58	4 106-101 -5	16 41 27 14	0 67 -65 -1	9 109 95 14
9 31 10 56	43 -1 68 -	2 5 442 378	2 6	6 38 38 0	K,L= 3 2	2+ 29 -30 0	11 35 35 0
11 42 -	32 -1	0 7 101 87	21	7 38 -50 12 8+ 12 15 -2	-16 69 -70 0 -15 80 -71 -9	3•24-24 0 4 50 27 22	12• 24 -33 9 13 45 -45 0
13. 20 -	18 -	1 9 63 -59	-4	9+ 27 - 32 5	-14 42 -44 1	K,L# 9 2	14+ 29 29 0
14* 18 15* 8	1/ 11 -	1 10 63 -95 3 11 133 114	18	11 40 49 -8	-11 48 56 -8	K,L= 0 3	K,L= 4 3
K.L. 6	U 67 -	12 154-143	3 -10	13 41 47 -5 Kalm 7 1	-10 163-164 0 -9 76 75 0	-16* 29 -35 5 -12 32 40 -8	-9 147-127 -19 -8 46 -51 4
1 - 27 -	30	2 14• 13 -20	7	-9 59 58 0	-8 136-133 -3	-10 178 187 -8	-7 67 -70 3
2 33	38 - 73	7 15 44 -46 8 16* 11 17	7 -5	-6 58 -72 13	-6 159 137 21	-6 221-235 13	-5 68 69 0
5 39	42 -	3 K,L= 3 1	l 7 n	-5 100-118 17 -4 49 -46 -2	-5 144 119 24 -4 102 -67 -35	-4 232-179 -53 -2 159-162 3	-4 33 -37 4 -3 102 71 3n
7+ 19	16	3 -15 38 -43	3 4	-3 59 -81 21	-3 59 34 25	0 202-204 1	-2 45 35 9
8 42 - 9• 17	46 18	4 -14 78 -75 0 -13 69 -74	-3 -3	-1 62 -60 4 1 56 -63 7	1 113 97 15	4 86 86 0	4 64 -63 0
10 37 -	39 18	1 -12 80 -75	5 -5 1 5	2 62 50 11 4 36 38 -1	2 228 194 33	6 103 96 7 8 31 -38 6	5 103 -87 -16 6 59 53 5
12. 26 -	23 -	2 -10 64 -64	í	6 52 • 46 • 5	5+ 16 -17 0	10 159-144 -14	7 16 32 -16
K#L# 7 1# 26	0 24	-9 138 131 2 -8 101-103	L 7 3 2	10 17 26 -8 11 9 6 2	6 208-181 -27 8 57 -59 1	14 53 59 -5 16 57 -42 -14	9 108 102 6
2 105-1	18 1	3 -7 235-222	2 -13	K.L. 8 1	9 94 -90 -4	K,L# 1 3	12+ 28 -30 2

Table 2 (cont.)					
H FO FC DF	H FU FC DF	H FO FC DF	H FO FC "F	₩ F0 FC 0F	H FO FC DF
13 • 28 -32 4	-14= 23 - 30 -7	-40 26 33 -6	-3+ 26 27 C	-: 91 -86 -4	-2 3A -4n 2
15 36 -27 -8	-11 57 58 -1	K.L. 6 4	-2• 26 -27 1	0 47 57 -9	9 2 3 39 - 5 2 2 3 20 - 6
K,L= 2 3	-10 34 32 1 -94 28 24 3	K.L. 8 4	0 97 98 U	2 70 67 2	4 66 -81 14
-8 75 -72 -2	-8 56 -41 -14	-4+ 29 26 2	1 47 47 0	3. 9 -25 16	6 61 -69 A
-6 37 -33 -3	-7• 16 20 -3	KiLま 0 う	2 155 141 13	4 63 58 4	
-5 17 - 34 16	-6 6/ -64 -6 -5 301 247 54	-10 46 -44 -1	4 8 23 -15	6 53 48 5	-8 71 15 55
-2 117 97 19	-4 224 163 61	-8 76 -78 1	5 26 26 0	7• 20 -19 0	-5 37 16 21
-1 48 47 1	-3 302 226 75	-4 57 57 0	7 54 -55 0	9+ 22 -17 -5	-2 64 -52 -13
1 197-185 -12	0 130 -95 -34	2 176-186 10	13 37 37 0	11+ 15 -27 12	3 79 -63 -15
2 149 138 10	1 160-123 -37	4 189 209 -20	14 36 -29 -6	13 23 13 10	5 204-139 -65
3 167-144 -23	2 33 11 22	6 34 -45 10 8 257-331 73	Kils 4 5 -5+21 18 2	K,L± 4 6 +6 35 32 3	0 03 -48 -14 7 80 -62 -17
5 179 157 22	4 33 21 12	10 - 25 - 26 0	K,L= 6 5	K,L# 6 6	K.L. 2 8
6 38 41 -2	6 34 34 0	12 70 87 -16	-5 31 26 5	-6 35 38 -3	-7+ 21 -31 10
7 127 101 26	7 76 -74 -2	14 62 -64 1	K,L= 0 6	K,LT 0 /	-4 33 5 28
9 42 -54 12	9 204-166 -37	-15 37 29 7	-8 93 105 -11	-8 45 112 -17	-2. 28 -37 8
10 38 50 -12	10 139 99 39	-14 49 -38 -10	-6 60 65 -5	-6 59 74 -14	0 30 - 33 3
11+ 15 -20 4	11 39 -39 0		-2+27 28 0		2 37 -40 3
13 31 26 5	15 58 -39 -18	-10 82 73 9	2 66 -60 -5	4 44 60 -15	4 85 -93 8
14+ 29 -24 -5	16 30 -27 -3	-9 60 -49 -10	6 179-218 38	12 36 - 38 1	5 41 -41 n
K,L8 6 3 -7-10 24 -14	K,L= 2 4 -164 6 -11 5	-8 59 -48 -11 -7+ 18 27 -9	8 1/0-20/ 36 Kula 1 6	K,L= 1 / -13 35 28 6	7 35 -45 9
-6+ 10 -27 16	-15+ 24 20 4	-6 185-149 -35	-14 79 -58 -21	-11 44 -31 -12	K,L# 3 8
-4 42 -53 10	-13 26 -38 11		-13 64 51 12		
-2+ 25 -30 4	-12 97 100 -0		-10+ 18 20 -1	-2 104 -73 -30	-8 70 63 6
-1 64 56 8	-10 97 101 -4	-2 57 -44 -13	-9 39 34 5	-1 101 -73 -28	-7 99 91 8
0 86 -78 -7	-9 39 -43 4		-7 87 55 3 <u>1</u>	0 39 - 38 - 1	-5+ 9 19 -10
2 54 -50 -4	-7 97 -90 -6	1 207-150 -57	-4 49 -45 -3	2 122 88 34	-3 111-102 -9
3+ 28 28 0	-6 120 103 17	2 282 191 91	-2 123 92 30	3 48 41 7	-2 71 62 9
4 150 135 15 5 97 86 11	-5 172 168 3 -4 598 550 48	3 93 -80 -12 5 77 56 21	0 48 39 8	4 51 -44 -0	-1 71 -69 -2 0 9 12 -3
6 119 104 15	-3 402 348 54	6 65 -58 -7	2 134 -93 -41	8 75 -51 -23	1. 9 -15 5
7 58 53 5		8 83 -69 -14	5 50 -46 -4	10 110 74 36	2• 19 15 4
8 31 - 31 U	1 34 -24 -9	10+ 18 -17 -1	8 60 -54 -5	K,L= 2 7	4 7 3 3
K.L= 7 3	2 37 - 32 - 5	12 35 34 1	9 73 -62 -11	-12* 28 28 0	9+ 25 -32 6
-8 35 -38 3	3 81 58 22	13 18 -15 -3	10+ 17 -36 18	-10* 11 -13 1	KJL= 4 8
-5+ 16 -29 13	5 46 -58 11	-15+ 19 -22 3	12 37 -50 12	-6+ 26 -36 9	K,L= 0 9
-3+ 20 -20 0	6• 7 16 -9	-14 63 63 0	14 63 -45 -18	-5 30 -30 0	-2• 26 -26 n
	7 39 36 3	-13 78 -71 -7	K≱L= 2 6 =14 59 57 1	-4* 23 -28 5	0 32 -40 7
8+ 15 - 34 18	9 89 81 7	-11+ 11 15 -3	-13+ 17 -7 -9	-1 42 41 1	4 105 118 -12
9+ 24 23 0	10 35 -51 16	-10 36 54 2	-12 41 41 0	2 30 28 2	6 46 55 -8
10+1/ 0 30 Kula 8 3	13 36 -48 11	-7+ 8 -4 -4	-10+ 13 -23 10	7 18 -15 -2	-3 114 -71 -43
-8 40 -41 1	16 22 20 1	-6 123 107 15	-9+ 14 -19 5	10+ 27 27 0	-2 61 -54 -6
-7 56 -55 -1	K,L= 3 4	-5 59 72 -12	-8 45 32 12	K.L= 3 7	-1 18 -31 12
-4 32 -25 -7	-12 58 -70 11	-3 38 56 2	-6 154 121 32	-11+ 22 22 0	-6+ 21 -21 n
-3 30 -25 -4	-10• 18 -11 -7	-2 47 -51 4	-5 146 126 20	-8 55 60 -5	-5 48 54 -6
-2+ 24 -17 -6	-8* 16 23 -6	-1+ / -13 0 0 135 112 23	-4 83 72 11	-7* 24 36 -12	
2 16 -11 -4	-6- 29 -26 -2	1 91 77 13	1 70 -78 7	-4+ 28 31 -2	-2 68 -63 -5
3 40 31 8	-5 70 66 4	2 34 35 0	2 33 28 4	-3 105-112 6	-1* 7 -20 12
4 42 -40 -2 Kita () 4	-4 59 65 -6	3 71 54 -2	3* 8 -19 11 5 61 51 9	-2 102 159 2	0 63 55 7
-16+ 12 -24 11	-2 47 46 1	6 . 55 59 - 3	6 64 -64 U	0 79 77 2	5 33 -33 0
-12 37 -57 19	-1 59 61 -2		7 49 47 1	1 55 57 -1	6 28 -27 -1
-8 94 110 -16	1 137 132 5	9 65 -56 -8	9+ 8 17 -8	3 18 13 4	-7+ 25 -27 1
-6 100 90 9	3 129 118 11	10 20 34 -14	13 68 -73 4	5 36 -48 12	-6• 13 16 -2
-4 243-247 .3	6 30 21° 8	11 35 43 -8	KJLE 3 6 =12+ 28 34 -7	6 80 79 0 78 9 - 18 9	-5 58 -54 -4
0 328 333 -5	8 60 60 0	13 32 44 -12	-11* 21 -23 1	9 35 34 0	-3+ 21 -22
2	9 92 -87 -5	15 ?2 -20 -1	-10+ 9 -16 6	11 37 50 -12	-1. 23 30 -6
4 175-179 3 8 138-172 34	10 34 -45 10 11 73 -83 10	K∌L# 3 5 ≁12+ 9 -8 ∩	-9 30 -39 9 -8* 8 16 -7	K,L= 4 7 -7 53 53 n	0+ 18 -25 6 4+ 19 -7 -11
10 200-235 33	12 35 -44 8	-11 52 57 -5	-7 113 115 -2	K,L= 5 7	K,L= 0 10
14+ 10 -42 32	13 22 19 2	-9-12 18 -5	-6 189 173 16	-7+ 12 -13 0	-2+ 27 33 -5
16 45 -50 5 Kulati 4	15 43 45 -1 Kiz 4 4	-7 46 45 -1 -6 60 68 -7	-5 246 218 28 -4 113 90 52	K,L= 0 8 -10 39 49 -10	2 45 -48 2
-17 - 25 - 22 - 3	-4 39 -35 -4	-5+ 25 29 -3	-3. 9 27 -18	-8 82 78 3	
-15 31 - 51 0	K,Lz 5 4	-4 67 68 0	-2• 9 -11 2	-4+ 11 -30 19	

for pyrene (without the hydrogen atoms) and -0.4104X + 0.4056Y + 0.8330Z = 3.323

for TCNE, where X, Y and Z are coordinates with respect to the crystal axes a, b and c in Å. The deviations of the atoms from the each least-squares plane are listed in Table 3. These two planes make an angle of about 2° with each other. The mean separation between the planes is 3.323 Å, which is smaller than the usual van der Waals separation.

 Table 3. Atomic deviations from the least-squares planes
 of the pyrene and TCNE molecules

Pyrene		TCNE	
Č(1)	0∙005 Å	C(9)	−0·003 Å
C(2)	0.008	C(10)	0.001
C(3)	0.001	C(11)	-0.000
C(4)	0.003	N(1)	-0.000
C(5)	0.012	N(2)	0.001
C(6)	-0.019		
C(7)	-0.006		
C(8)	-0.001		

The distances between the atoms of the nearest neighbor pyrene and TCNE molecules are listed in Table 4, where the shortest one is C(1)-C(10), 3.253 Å. Such close contact between the donor and the acceptor

Fig. 2. Relative orientation of pyrene to TCNE found in the crystal.

Fig. 3. Bond lengths and their e.s.d.'s (Å) and bond angles and their e.s.d.'s (°).

molecules suggests the presence of a strong intermolecular interaction. The relative orientation of TCNE to pyrene found in the crystal is shown in Fig.2.

 Table 4. Distances between atoms of the nearest neighbor pyrene and TCNE less than 3.5 Å and their standard deviations

Pyrene-TCNE	
C(1)-C(9)	3·331 (0·013) Å
C(1) - C(10)	3.253 (0.012)
C(2) - C(9)	3.330 (0.012)
C(2)-C(11)	3.325 (0.013)
C(3) - C(11)	3.435 (0.011)
C(4) - C(9')	3.501 (0.011)
C(4) - C(10')	3.326 (0.011)
C(5) - C(9')	3.344 (0.012)
C(5) - C(11')	3.422 (0.012)
C(6) - C(9')	3.480 (0.013)
C(6) - C(11')	3.408 (0.012)

The molecular structures of the constitutent molecules are illustrated in Fig. 3. The bond lengths given in Fig. 3 have not been corrected for thermal motions.

The bond lengths and bond angles of TCNE are in good agreement with those found by Bekoe & Trueblood (1960), if the standard deviations are taken into account. The largest discrepancy is found in the $C-C \equiv N$ angle, which differs by about 3° from their value. According to our results, $C-C \equiv N$ seems to be not linear but bent slightly.

The bond lengths of pyrene agree very well with the values reported by Robertson (1948), but some bond distances differ by about 0.1 Å from the values reported by Damiani, De Santis, Giglio, Liquori, Puliti & Ripamonti (1965) for the crystal structure of the molecular complex between pyrene and 1,3,7,9-tetra-methyluric acid.

The authors wish to thank Professor Hideo Akamatu for valuable discussions. We are grateful to Dr Toshio Sakurai and Dr Tetsuzo Ito and Dr Tamaichi Ashida who have kindly allowed us to use UNICS programs and to Mr Yuji Ohashi who gave us useful suggestions and advice.

The computer used in this work was the HITAC 5020E in the Computer Centre, University of Tokyo.

References

BEKOE, D. A. & TRUEBLOOD, K. N. (1960). Z. Kristallogr. 113, 1.

DAMIANI, A., DE SANTIS, P., GIGLIO, E., LIQUORI, A. N., PULITI, R. & RIPAMONTI, A. (1965). Acta Cryst. 19, 340.

KURODA, H., IKEMOTO, I. & AKAMATU, H. (1966a). Bull. Chem. Soc. Japan, 39, 1842.

KURODA, H., IKEMOTO, I. & AKAMATU, H. (1966b). Bull. Chem. Soc. Japan, 39, 547.

MULLIKEN, R. S. (1952). J. Amer. Chem. Soc. 74, 811.

ROBERTSON, J. M. K. (1948). Acta Cryst. 1, 101.

ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.